
FreeSB User’s Guide
1. Introduction

1.1 Purpose

This document provides step-by-step instructions on using FreeSB to write custom
FreeSB services and to integrate applications using the FreeSB.

1.2 Background

FreeSB is an application integration framework written in Java, and based on the
Enterprise Service Bus (ESB) concept. It enables loosely coupled services
(applications) to plug-in to the bus and communicate with each other. The
framework uses SOAP as the transport mechanism to communicate between these
services, thus platform interoperability is not an issue. The Apache Axis SOAP
implementation is used as the transport.

FreeSB comes with some pre-written services and components required for its
operation:

 AuthService – This is the authentication & authorisation service that
handles all security related matters within FreeSB

 EsbClient – This is the client module that applications use to “plug” into
FreeSB

 EsbCommons - Contains all the libraries required by the FreeSB as well
as code templates and build scripts

 EsbDocs – Contains the documentation for FreeSB
 EsbLogger – This handles all logging related activity within FreeSB and

it’s client applications
 SupervisorService – This is the management service for the FreeSB, it acts

as both a web front-end in order configure the FreeSB, as well as a co-
ordinator for FreeSB services to perform registering (or “plugging” in) and
load-balancing/fail-over

 TestService – Features a sample web application that showcases
functionality such as performing calls both synchronously and
asynchronously

2. FreeSB Architecture

2.1 Introduction

<Insert Diagram here>

Note that when a “custom” service is referred to, it is an external service that
has been written by a user.

Also note that names of services have been shortened to what they are
configured in FreeSB with, i.e. instead of referring to Authentication Service, it
is referred to as AuthService, as that is the name defined for that service.

Each service that is required to “plug” into FreeSB will require a corresponding
client that can call the methods in that service. The EsbClient that is provided with
FreeSB provides base functionality by acting as a client for the core FreeSB
services such as the AuthService, SupervisorService and EsbLogger. However, if
the user wishes to implement a custom service, then the EsbClient needs to be
extended in order to handle the new service and it’s methods. This new “custom”
client would make use of its EsbClient super-class to perform the core tasks such
as authentication, logging etc, but would have it’s own logic to handle operations
on the new custom service.

Every service also needs to have what’s called an “adaptor” – a class or other such
programmatic unit that would make and receive the actual FreeSB calls. This
adaptor would call another service by using the corresponding custom EsbClient
written for that service.

The calls that are made are serialized into SOAP and would arrive at the requested
service over the HTTP protocol (note that HTTPS can be used as well, to encrypt
the data that is sent). Here, there would be another “adapter” attached to that
service which would intercept the call, and perform such actions as authentication
and authorisation, before passing the call onto the service implementation itself,
(be it another class or a mainframe etc) which would perform the requested task
and return the result back to the caller.

If the task requested takes a large amount of time, it is possible for the called
service to not block – instead it would return the call (without a result)
immediately back to the calling service. The called service would continue and
process the task asynchronously. This means that after the task is completed, the
called service would have to send the result back to the original calling service, as
long as the calling service’s adaptor has been configured to handle incoming
requests.

This User’s Guide will focus on developing using the Java platform, as it is
currently the only client supported by FreeSB. Although it is possible to use any
other language or platform that supports SOAP to communicate with FreeSB
services, a client will need to be written for each such platform. FreeSB uses the
Apache Axis implementation of the SOAP protocol for communicating with
internal services, and it is the SOAP implementation used for the examples
presented here. To follow the examples in this guide, it is strongly recommended
that the intricacies of Apache Axis be learnt before proceeding. Documentation for
Apache Axis is available at the following URL:

http://ws.apache.org/axis/java/user-guide.html

Pay particular attention to the section on “Using WSDL with Axis”.

For developing services and integrating applications outside of Java (for
example, .NET) please refer to the appropriate documentation for the relevant
platform.

This guide will first show how to write a service (including a corresponding
adaptor) and make it accessible to the FreeSB. Then the guide will show how to
write a client (that extends the EsbClient) to access this new service, finally
showing how to use this custom client within an application to make calls on the
new service (including implementing an asynchronous call-back mechanism). This
will assume the reader has followed the instructions in the “FreeSB Installation
Guide” and that an installed and functional FreeSB is available to use.

3. Writing A Custom Service

To write a custom service requires several steps, including creating the service
implementation class as well the corresponding adaptor, finally configuring
FreeSB to accept this new service.

3.1 Writing the Service Implementation Class

The service implementation contains the functionality that is to be accessed via
FreeSB. It can be anything, a mainframe application, a database etc as long as the
adaptor (which translates FreeSB calls) can access it. In this case it is a normal
Java class, and hence its methods can do anything possible in Java, with a few
limitations:

 Time – If the processing within a method takes an extraordinary amount of
time to return (i.e. greater than a few seconds) then the method should be
implemented as an asynchronous call i.e. it spawns off perhaps a new
thread to do the processing when a request arrives, returning the call to the
client immediately without a result. After processing, the thread can return
the result to the client by using a “call-back” method (see later chapters on
implementing asynchronous call-backs).

 Types – Whilst the methods themselves can do anything possible in Java,
the input parameter type(s) and return type must be SOAP-compatible.
Here is a list of compatible types:

byte[]
boolean
byte
java.util.Calendar
java.math.BigDecimal
double
float
byte[]
int
java.math.BigInteger
long

javax.xml.namespace.QName
short
java.lang.String

For example, here is a simple “Hello World” Java class, which has a method that
accepts a String called “name”, and returns a greeting with the name inserted:

HelloWorld.java
package com.spherion.ap.esb.helloworldservice;

public class HelloWorld
{
 public String getMessage(String name)
 {
 return “Hello” + name + “, this is world!”;
 }
}

Despite the trivial example, that is really all that is required to implement
functionality in a service, a Java class that takes valid argument types and returns a
valid return type. Note that in future, this could be a C# class, or any programming
language – as long as the service can be accessed via SOAP, it’s compatible with
FreeSB (with a valid client of course).

Next is the adaptor class, which is what is “exposed” to the outside world through
SOAP, and accepts incoming requests, passing valid ones along to the service
implementation. In this case no translation of requests into compatible formats is
required, as both the adaptor and service implementation is written in Java but if
the service implementation was a mainframe application, then the adaptor would
need to translate the method calls into the proprietary format accepted by the
mainframe application. For the example below, it is assumed the adaptor is in the
same Java package as the service implementation:

HelloWorldAdaptor.java
package com.spherion.ap.esb.helloworldservice;

import com.spherion.ap.esb.client.EsbClient;
import com.spherion.ap.esb.client.EsbPrincipal;

public class HelloWorldAdaptor
{
 private HelloWorld hw;
 private EsbClient ec;

 public HelloWorldAdaptor ()
 {

 try
 {
 //instantiates the EsbClient and the HelloWorld class
 this.ec = new EsbClient("HelloWorld");
 this.hw = new HelloWorld();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public HelloWorldAdaptor(com.spherion.ap.esb.helloworldservice.HelloWorld hw)
 {
 this.hw = hw;
 }

 public String getMessage(String esbSeqId, EsbPrincipal[] principals,
 String name) throws Exception,HelloWorldException
 {
 //checks the security credentials of the requesting user and service
 if(ec.checkPrincipals(principals))
 {
 return hw.getMessage(name);
 //ec.sendResponse(esbSeqId, "Message successfully logged");
 }
 else
 //if it was invalid, throw an exceptiom back to the client
 {
 throw new HelloWorldException("One or more principals " +
 "is not valid!");
 }

 }
}

As can be seen, there’s a little bit more work to do in writing the adaptor:

 Firstly, the EsbClient class needs to be imported into the adaptor
 Then, the EsbPrincipal class is imported. As described earlier in the

description of the AuthService <<<Err?>>>> , a principal is a token that
tracks a user or service’s session within FreeSB, and includes information
on the roles they belong to.

 Declare two class variables, one referencing the EsbClient and the other
the service implementation class, which in this case is “HelloWorld”

 Declare a no-argument constructor for the class, which will instantiate the
service implementation (“HelloWorld”) and EsbClient objects. We pass in
the name of the service as a String argument to the constructor of the
EsbClient, to tell it that it will be acting on behalf of that service. FreeSB

will need to be configured to accept “HelloWorld” as a valid service,
please see further below.

 Declare a constructor for the class that takes an instance of the service
implementation (“HelloWorld”) object and store it in the appropriate class
variable.

 Then, all that is needed is to have methods identical in name to that of the
service implementation class, in this case getMessage(String name) -
except for the fact the method in the adaptor accepts two more arguments
(that could be best described as “header information”) at the start, the ESB
Sequence Id which is a unique number for all messages sent using FreeSB,
and an array of Principals, which contain the service and user principals.
Another difference is that the methods in the adaptor should throw a
custom exception for the service, in this case an instance of
HelloWorldException

 Within the method, the principals that are associated with the request are
checked for validity by using the EsbClient’s checkPrincipals() method.
This will use the AuthService to check them, and if they are valid
principals, then the request is passed on to the service implementation for
processing, minus of course the “header” information. The result is
returned back to the client.

 If the principals are not valid, then a HelloWorldException is thrown back
to the client. The HelloWorldException extends the normal Java
Exception:

HelloWorldException.java
package com.spherion.ap.esb.helloworldservice;

import com.spherion.ap.esb.client.EsbException;

public class HelloWorldException extends Exception
{

public HelloWorldException ()
{

super();
}

public HelloWorldException (String arg0)
{

super(arg0);
}

public HelloWorldException (Throwable arg0)
{

super(arg0.getMessage(),arg0);
}

public HelloWorldException (String arg0, Throwable arg1)
{

super(arg0, arg1);
}

}

3.2 Configuring FreeSB To Recognise New Services

To configure FreeSB to accept a service as being valid, there are two things
required:

 Configure a new “user” to represent the service, i.e. create an entry for the
service in LDAP.

 Add this entry to the LDAP role designated for all “services”.

To do this, the “SupervisorWeb” application is used. Please go to the following
URL, noting that the host is where the FreeSB SupervisorService has been
deployed to, and the port is what the container has been configured to use:

http://<host>:<port>/SupervisorService/

The following URL would be typical:

http://localhost:8080/SupervisorService/

When FreeSB was installed, the “Administrator” account that was specified in the
build.properties file should be familiar to the reader. Please log into the
SupervisorWeb using the username and password specified for this Administrator
account. The default username is usually “admin”.

Once logged in, please proceed to the “Modify Config” section of the application.
A list of all currently configured services should be displayed.

In the section down below, where it says “To add a service…”, please enter the
following details to create the HelloWorld service - note that usually most
organizations use a different structure for the LDAP Distinguished Name, i.e. a
different organizational unit (“ou”) value etc, please modify as necessary, it is only
the service name, username and password that is important:

Name of Service: “HelloWorld”
Distinguished Name: “cn=Hello World,ou=Technology,o=Spherion”
Username: “helloworldusername”
Password: “helloworldpassword”

A new “HelloWorld” entry should appear in the list of configured services. Note
that if the HelloWorld service’s link is clicked on, configuration entries should be
seen for it’s username and password – more configuration entries can be added
here but that will be dealt with later.

Next, click on the “System” link in the list. This contains the global properties for
FreeSB. Two entries are required, “helloworldpath” and “helloworldport”. These
two entries describe the path on the web server to get to the service, as well as the

port that the server is running on. Down the bottom, where it says “To create a
new config property…” please enter the following two properties (note that the
implication of these two properties will be explained in further sections) and hit
“Create config”:

Key: helloworldpath
Value: TestService/services/HelloWorld

Key: helloworldport
Value: 8080

What all this has effectively accomplished is that the service has been configured
in FreeSB. When an EsbClient is instantiated by passing in the name of the service
as a parameter (i.e. “HelloWorld”), it will recognise the service name and proceed
to authenticate that client against FreeSB (using the username and password
configured above).

3.3 Making Axis recognise the Adaptor as a SOAP Service

Now that the service implementation, adaptor and custom exception classes have
been written, Apache Axis needs to be configured so that this new service can be
accessed by SOAP - i.e. turn it into a “Web Service”. It’s the adaptor class that
must be exposed as the entry point – it receives the incoming requests first, doing
authentication etc before passing the request onto the service implementation.

As the Axis documentation indicates, in order to expose a class using SOAP, a
WSDD (Web Service Deployment Descriptor) file must be written for it, called
“server-config.wsdd”. For this simple adaptor, the actual service declaration is
fairly trivial (although it does get more complicated when serialization of custom
objects over SOAP is required). An example is listed below:

server-config.wsdd

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultClientConfig"
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
 xmlns:handler="http://xml.apache.org/axis/wsdd/providers/handler">

 <globalConfiguration>
 <requestFlow>
 <handler type="java:org.apache.axis.handlers.JWSHandler">
 <parameter name="scope" value="session"/>
 </handler>
 <handler type="java:org.apache.axis.handlers.JWSHandler">
 <parameter name="scope" value="request"/>
 <parameter name="extension" value=".jwr"/>
 </handler>
 </requestFlow>
</globalConfiguration>

 <handler type="java:org.apache.axis.handlers.http.URLMapper" name="URLMapper"/>
 <handler type="java:org.apache.axis.transport.local.LocalResponder" name="LocalResponder"/>
 <handler type="java:org.apache.axis.handlers.SimpleAuthenticationHandler" name="Authenticate"/>

 <service name="AdminService" provider="java:MSG">
 <namespace>http://xml.apache.org/axis/wsdd/</namespace>
 <parameter name="allowedMethods" value="AdminService"/>
 <parameter name="enableRemoteAdmin" value="false"/>

 <parameter name="className" value="org.apache.axis.utils.Admin"/>
 </service>

 <service name="Version" provider="java:RPC">
 <parameter name="allowedMethods" value="getVersion"/>
 <parameter name="className" value="org.apache.axis.Version"/>
 </service>

 <service name="HelloWorld" provider="java:RPC" style="rpc" use="encoded">

<parameter name="className"
value="com.spherion.ap.esb.helloworldservice.HelloWorldAdaptor"/>
 <parameter name="allowedMethods" value="*"/>
 <parameter name="scope" value="Application"/>
 <typeMapping
 xmlns:ns="http://client.esb.ap.spherion.com"
 qname="ns:EsbException"
 type="java:com.spherion.ap.esb.helloworldservice.HelloWorldException"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://client.esb.ap.spherion.com"
 qname="ns:EsbPrincipal"
 type="java:com.spherion.ap.esb.client.EsbPrincipal"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 </service>

 <transport name="http">
 <requestFlow>
 <handler type="URLMapper"/>
 <handler type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
 </requestFlow>
 </transport>

 <transport name="local">
 <responseFlow>
 <handler type="LocalResponder"/>

 </responseFlow>
 </transport>

</deployment>

Most of the WSDD file contains standard Axis settings that can be left alone,
except for where it’s in bold, where the service is actually declared. It says that
“HelloWorld” is the name of the SOAP service (this effects the path on the web
server used to access this service, i.e. Axis will name the last part of the service
URL according to this value), that the class exposed should be
“HelloWorldAdaptor”, that all methods within the class should be made available
and that the scope is “Application” - meaning only one instance of the adaptor will
be instantiated, and that object will be re-used for every call that comes in. There’s
also what’s known as “typeMapping” which tell Axis that these particular objects
can be serialized into SOAP, again refer to the Axis documentation on
typeMappings.

Next, the web.xml file is required which tells Jetty that this is a web application:

web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<display-name>Apache-Axis</display-name>
 <servlet>
 <servlet-name>AxisServlet</servlet-name>
 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AxisServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet>
 <servlet-name>AdminServlet</servlet-name>
 <display-name>Axis Admin Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AdminServlet
 </servlet-class>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <servlet-mapping>

 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/servlet/AxisServlet</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>*.jws</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>

 <mime-mapping>
 <extension>wsdl</extension>
 <mime-type>text/xml</mime-type>
 </mime-mapping>

 <mime-mapping>
 <extension>xsd</extension>
 <mime-type>text/xml</mime-type>
 </mime-mapping>

 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 </welcome-file-list>
</web-app>

What this does is basically load the Axis Servlet that acts as the engine for all
SOAP requests that come in and forwards onto the appropriate adaptor depending
on what service was requested.

3.3 Configuring The Service To Initialize On Startup

The service needs to “initialise” on startup, that is, register with FreeSB. This is
done by having an “InitService” servlet class that’s loaded on start-up by the Jetty
container, and instantiates the “HelloWorldAdaptor”. This causes the constructor
for “HelloWorldAdaptor” in turn instantiating an instance of the EsbClient with
the name “HelloWorld” passed into it – hence registering with the FreeSB. Due to
timing issues, the “InitService” class should wait until Jetty has completed startup
and is accepting incoming connections, so a thread needs to be spawned that will
attempt to connect to it’s localhost until finally a connection gets through, and
only then instantiate “HelloWorldAdaptor”.

InitService.java
package com.spherion.ap.esb.helloworldservice;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.Socket;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;

public class InitService extends HttpServlet implements Runnable
{

public void init() throws ServletException
{

new Thread(this).start();
}

public void run()
{

connectToHost();
}

public void connectToHost()
{

try
{

Socket s = new Socket();
InetSocketAddress isa = new InetSocketAddress("localhost", 8080);
s.connect(isa);
s.close();
new HelloWorldAdaptor();

}
catch (IOException ioe)
{

System.out.println("Container on localhost not responding, will try
again");

try
{

Thread.sleep(5000);
}
catch (InterruptedException ie)
{

ie.printStackTrace();
}
connectToHost();

}
}

}

The web.xml also needs to be configured to load this “InitService” servlet on
startup, the following lines after the last servlet declaration will work:

web.xml (portion)
 <servlet>
 <servlet-name>InitService</servlet-name>
 <display-name>Init service</display-name>
 <servlet-class>
 com.spherion.ap.esb.helloworldservice.InitService

 </servlet-class>
 <load-on-startup>2</load-on-startup>
 </servlet>

3.4 Deploying The New FreeSB Service

That’s all that’s required for a FreeSB service. It’s time to package the service into
a deployable WAR (Web Application Resource) file. Here are some pointers when
assembling the WAR file:

 Name the WAR file as “TestService.war” as by default Jetty gets the root
directory for a web application by the name of the WAR file, so
“TestService.war” will mean the root is “TestService” – this is what
FreeSB was previously configured to use as the path to access the service
e.g. “helloworldpath”.

 Use Apache Ant’s “WAR” task to build the WAR file – it’s much easier.
 Make sure the “server-config.wsdd” file is placed in the WEB-INF

directory.
 Make sure all the files in the “lib” directory of the EsbCommons project is

copied to the “WEB-INF/lib” directory.

FreeSB has already written all the classes and deployment descriptors required for
this example, please see the “TestService” directory in the distribution for the
source code (see the package “com.spherion.ap.esb.helloworldservice”) and
configuration files. The build script (which can also be used as a template for
automating the deployment of custom services) included in the TestService’s base
directory will deploy the TestService with the following command:

ant all

Note that the SupervisorService, AuthService and EsbLogger must have already
been deployed either on the same container or on different containers on different
machines – refer to the installation guide for details on deploying FreeSB
correctly.

Make sure that the properties for the HelloWorld service have been configured as
described in section 3.2.

Please ignore the code in the “com.spherion.ap.esb.client” and
“com.spherion.ap.esb.testservice” packages for now – it will be used to describe
client functionality in later sections.

Once the application has been deployed, start Jetty (if using the FreeSB build
script, can be done using the ant task “start_jetty” – refer to the installation guide)
and navigate to the following URL (where <host> is the location of Jetty, <port>
is the port it is running on and <root> is what the WAR file was named):

http://<host>:<port>/<root>/services/HelloWorld

A typical URL would look like this:

http://localhost:8080/TestService/services/HelloWorld

This should show “And now... Some Services” with a list of Web Services
available, including “HelloWorld”. Clicking on the “wsdl” link next to the service
name will show the WSDL (Web Service Description Language) for the service.
Please see the next chapter for more information on WSDL.

4.0 Writing The Client

Now that the service has been deployed, a client must be written that can access
this service. First, the “stubs” must be created, which are a bunch of classes
generated by Axis that hide the creation of SOAP messages from the developer,
instead exposing standard Java calls. These stubs are generated from the WSDL
referred to in the previous section. Then a client needs to be written (as a class that
extends the EsbClient) which can use the stubs. Note that if the intent is to store
an instance of this client in a HTTP session or persisting it somehow, then make
sure all fields within it are serializable.

4.1 Creating The Stubs

The easiest way to create stubs is to use Axis’s “WSDL2Java” task. What this
does is parse the WSDL for a service, and creates stub classes that have method
calls which match that of the service, in this case, the getMessage(String name)
method. When these methods are invoked on the stubs, they serialize the calls into
SOAP and make the request to the service.

For the HelloWorld service, the basic invocation form for the “WSDL2Java” task
looks something like the following (making sure to change <host>, <port> and
<root> as appropriate, as well as adding to the classpath from EsbCommons\lib
the following jars: axis.jar, saaj.jar wsdl4j.jar, jaxrpc.jar,commons-
logging.jar,commons-discovery.jar).

For example:

java -cp axis.jar;saaj.jar;wsdl4j.jar;jaxrpc.jar;commons-logging.jar;commons-discovery.jar
org.apache.axis.wsdl.WSDL2Java -p com.spherion.ap.esb.client
http://localhost:8080/TestService/services/HelloWorld?wsdl

The “-p com.spherion.ap.esb.client” tells WSDL2Java to create the stubs in the
com.spherion.ap.esb.client package – this is the package that also contains the
EsbClient class. All stubs and custom clients (that extend EsbClient) must be in
that package in order for the various argument types to be compatible between the
EsbClient itself and its sub-classed custom clients.

4.2 Using The Stubs

Now that the stubs required for communication with the service have been
created, it’s time to write the client that will use these stubs. It should be called

“HelloWorldClient”. This client must be in the same package as the stubs
generated previously to ensure compatibility between various classes, so the
package “com.spherion.ap.esb.helloworldclient” is what should be used. The
client also needs to use FreeSB functionality such as authenticating users etc,
therefore the generic EsbClient must be extended. Make sure to code the custom
client so that on instantiation, as an argument to the constructor it will accept the
service it is acting on behalf of, i.e. if “Workflow Application” wishes to use the
HelloWorld service, then the Workflow Application will instantiate an instance of
the HelloWorldClient by passing in (say) “WorkflowApp” to the constructor. Of
course, “WorkflowApp” needs to be defined as a service within the FreeSB. When
the HelloWorldClient gets the name of the service it is acting on behalf of, it
should instantiate it’s EsbClient super-class with that name as well.

Within the client, the EsbClient superclass is asked to return a URL of where the
HelloWorld service is located, passing in the name of the service, and the property
keys for the path and port (refer back to section 3.2 where the two properties were
created, the keys being “helloworldpath” and “helloworldport”).
The getServiceURL(…) method is used to return the desired URL, it will cause
the EsbClient to connect to the SupervisorService and ask it for a list of service
instances (if any), and will return to the custom client a single URL for a service
instance. The URL will be dependant on current load in the system – the
EsbClient will perform automatic load balancing. Hence repeated calls may return
different URLs that refer to difference service instances. This URL is used to
create an instance of the stub and store it in a class variable. To create the stub, a
“HelloWorldServiceLocator” object needs to be instantiated which when the
getHelloWorld(…) method is invoked, passing in the URL, it will return a stub
that will talk to that relevant service instance.

The only thing left to do now is to write a method in the client that corresponds to
the getMessage(String name) method in the service. This method will first get a
“sequence” number from the super-class. This sequence number is a unique
identifier for each message across FreeSB, it acts as a way for messages to be
tracked and, in the cases of asynchronous communication, to identify the replies.
Next, the method will need to get the user principal and service principal from the
super-class. The idea here is, the application that uses this custom client will
authenticate against FreeSB when it instantiates it (that “service principal” will be
stored in the super-class) and the application should then authenticate the user by
invoking the authentication method in the super-class (see Appendix A for a list of
EsbClient methods).

HelloWorldClient.java
package com.spherion.ap.esb.client;

import com.spherion.ap.esb.client.EsbClient;

public class HelloWorldClient extends EsbClient
{

private HelloWorldSoapBindingStub hwsbs;
private String hwurl;

public HelloWorldClient(String serviceName) throws Exception
{

super(serviceName);
hwurl = super.getServiceURL(“HelloWorld”, ”helloworldpath”,”helloworldport”);

hwsbs = (HelloWorldSoapBindingStub) new HelloWorldServiceLocator()
.getHelloWorld(new URL(hwurl));

}

public String getMessage(String name) throws Exception
{

 String seqNo = super.getNextSeqNo();
 EsbPrincipal[] principals = super.getPrincipals();
 hwsbs.getMessage(seqNo, principals, name);

}
}

4.3 Adding Fail-Over To The Client

Refer back to the HelloWorldException that is thrown by the service when the
requesting user and service isn’t authenticated. This is an application-level
exception, meaning that the service is running correctly - the exception was
deliberately caused by the business process that mandate all users of the
HelloWorld service must be authenticated.

There is also what’s known as a “system” exception, where the service fails
because of an event outside of the scope of the application, i.e. the container goes
down and the host is unreachable. It would be good for a client to trap these
system exceptions when they occur and then tell FreeSB to de-register that service
and then attempt to connect to another instance of that service (if one exists). This
prevents other clients wasting time in trying to connect to the dead service.

All that is required is to code the client in such a way that if an exception occurs
when using the service, it is checked to determine whether it’s an application level
exception or a system level exception. If the former, merely pass the exception on
to the application using the client to be dealt with, if it’s the latter, then tell the
FreeSB to de-register the service that has failed, then get a new URL for another
instance of that service (if one exists) from the EsbClient and reconnect to that
one. This requires a new method called “connect()” which is called from the catch
clause.

Unfortunately Apache Axis is extremely buggy when it comes to exceptions. That
is, even though the service might be throwing “HelloWorldException”, it arrives
at the client as a “RemoteException” – no matter what. Even if the service is
down, then the exception that comes back is a “RemoteException”. So, the only
way to work out what exception is being thrown by the service, is by doing a
string comparison on the message field within the RemoteException. This is done
using the getMessage() method on the RemoteException, and check to see if string
that is equal to the application-level exception thrown by the service (say,
HelloWorldException). If it is, simply pass the exception back to the application
that’s using the client, otherwise, deregister the “dead” service (by calling on an
EsbClient method called “deregister()”, and try and connect to another one.

HelloWorldClient.java

package com.spherion.ap.esb.client;

import com.spherion.ap.esb.client.EsbClient;

import java.net.URL;
import java.rmi.RemoteException;

public class HelloWorldClient extends EsbClient
{

 private HelloWorldSoapBindingStub hwsbs;
 private String hwurl;

 public HelloWorldClient(String serviceName) throws Exception
 {
 super(serviceName);
 connect();
 }

 public void connect() throws Exception
 {
 hwurl = super.getServiceURL("HelloWorld", "helloworldpath",
 "helloworldport");
 hwsbs = (HelloWorldSoapBindingStub) new HelloWorldAdaptorServiceLocator
()
 .getHelloWorld(new URL(hwurl));
 }

 public void deregister() throws Exception
 {
 super.deregister("HelloWorld", hwurl);
 }

 public String getMessage(String name) throws Exception
 {
 try
 {
 String seqNo = super.getNextSeqNo();
 EsbPrincipal[] principals = super.getPrincipals();
 hwsbs.getMessage(seqNo, principals, name);
 }
 catch (HelloWorldException hwe)
 {
 throw new Exception(hwe);
 }
 catch (RemoteException re)
 {
 String errMsg = re.getMessage();
 if (errMsg.indexOf("HelloWorldException") != -1)
 {
 throw new Exception(re);
 }

 re.printStackTrace();
 deregister();
 connect();
 getMessage(name);

 }

 }
}

4.4 Running The Example

The “HelloWorldClient” class has already been written and incorporated into the
TestService, under the package “com.spherion.ap.esb.client”. Please note that the
rest of the classes there are the stubs referred to in section 4.1, they can be over-
written if the reader wishes to generate the stubs again.

A simple servlet has also been written that will invoke the “HelloWorldClient”
class through a web interface. This servlet is in a class named
“EsbClientTestServlet” located in the com.spherion.ap.esb.testservice package.
Quite simply, all the servlet does is use the “HelloWorldClient” to authenticate a
user, and then invokes the getMessage(…) method.

Please navigate to the following URL to access the web interface, making sure to
change <host>, <port> and <root> as appropriate:

http://<host>:<port>/<root>/HelloWorldTestServlet

Typically, the URL would look like this:

http://localhost:8080/TestService/ HelloWorldTestServlet

At the form presented, log in using any user account – typically the Administrator
account referred to in section 3.2, but other user accounts can be created by using
the Supervisor GUI (see section 6.0):

Once in, type in the reader’s first name into the field and press the “Get Message”
button. This will trigger the HelloWorldClient to call the HelloWorldService and
display the message on the screen.

5. Aysnchronous Call-backs

Asynchronous call-backs are relatively straight-forward to perform using FreeSB,
with a few caveats. Asynchronous calls result through co-operation between two
services, generally no anonymous calls from a service can be made on another
service that exposes an asynchronous method – the service being called must
know which specific service it should in turn send the response to. There is no
way (at present) to dynamically state in the request which service the response
goes to.

Consider two services, service A and service B. If service A wishes to
asynchronously call service B, then service B needs to have an asynchronous
method written in such a way that after processing the request, service B will
know to send the response back to service A specifically. Likewise, service A
needs to have a corresponding call-back method that service B can invoke once
service B has finished processing. For service B to invoke this call-back method,
service A’s client stubs must be available to service B, and of course service B’s
client stubs must be available to service A to make the original call in the first
place.

<<insert diagram>>

Recall that a service requires two classes, the service implementation and adaptor.
With regard to asynchronous calls, it is up to the adaptor to co-ordinate such
activity (after all, it is the adaptor that is exposed to SOAP, not the
implementation class). When an asynchronous call arrives at the adaptor, the
adaptor should (after checking the security credentials of course) add that request
to some sort of queue (say a JMS queue) or even spawn off a new thread to do the
work – whichever way, the method should return immediately after so the client
isn’t blocked. That’s the whole point of asynchronous calls.

For clarity, asynchronous methods in a service should be prefixed with “asynch”.
For example:

public void asynchRegisterService(…)

or for getter/setter methods:

public void getAsynchMessage(…)

Likewise, for call-back methods in the client, they should be prefixed with
“callback”. For example:

public void callbackRegisterService(…)

or for callback getter/setter methods:

public void callbackGetAsynchMessage(…)

5.1 Implementing Asynchronous Methods

In order to show how asynchronous call-backs work involve tweaking the existing
code slightly. Because this is just an example, there is no need to go to the effort
of writing a brand new service to represent the calling service, instead the existing
HelloWorld service can be used to asynchronously call itself – that is, the sample
test servlet will call an asynchronous method on the HelloWorld service, which

will then use it’s own HelloWorldClient to call another method within itself (the
“callback” method). This callback method will simply update some data in the test
servlet (since they are all in the same application). This will let the reader become
familiar enough with asynchronous communication to proceed further. To explain
the scenario, the following diagram shows what will happen:

<<insert diagram of helloworldservice calling itself here>>

A new method is added to the HelloWorld service’s adaptor
(HelloWorldAdaptor.java), called “getAsynchMessage(…)” with the arguments
identical to the existing “getMessage(…)” method and it will even invoke the
same method in the service implementation class (“HelloWorld.java”). The
difference is that this new asynchronous method’s return type will be void (since it
does not return any data within the same call, only later).

HelloWorldAdaptor.java (excerpt)
 public void getAsynchMessage(String esbSeqId, EsbPrincipal[] principals,
 String name) throws Exception,HelloWorldException

{
 //have to convert the arguments to finals in order to be used in inner-classes
 final String esbSeqIdUsedInsideThread = esbSeqId;
 final String nameUsedInsideThread = name;

 //checks the security credentials of the requesting user and service

if(ec.checkPrincipals(principals))
{
 //starts a thread from the anonymous inner class to perform the
 //asynchronous operation
 new Thread()
 {
 public void run()
 {
 String msg = hw.getMessage(nameUsedInsideThread);
 try
 {
 HelloWorldClient threadHwc = new HelloWorldClient("HelloWorld");
 EsbPrincipal[] servicePrincipal = threadHwc.getPrincipals();
 //wait for 20 seconds before calling back
 sleep(20000);
 threadHwc.callbackGetAsynchMessage

(esbSeqIdUsedInsideThread,servicePrincipal,msg);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }
 }.start();

 return;

}
else
//if it was invalid, throw an exception back to the client
{

 throw new HelloWorldException("One or more principals " +
 "is not valid!");
}

}

As can be seen, the method starts a new thread (the logic of which is defined in an
inner-class) and returns immediately. The spawned thread is what tiggers the
service implementation, gets the result and after waiting for 20 seconds, uses the
HelloWorldClient to invoke the callback method (the callback method will be
written in the same class next). Now, with regard to the principals – as this is the
service itself making the call, and there is no user who is authenticated, the only
principal returned with the getPrincipals() method will be the service principal.
The ESB sequence ID (esbSeqId) is of paramount importance with asynchronous
calls – that is the only way to track what response is for which request. Make sure
the esbSeqId that came along with the request is passed along when making the
callback.

5.2 Writing The Callback Method

The callback method is presented below. Recall that for this example, in order to
maintain simplicity, the callback method will be in the same class as the
asynchronous method.

HelloWorldAdaptor.java (excerpt)

//calls a static method in the HelloWorldTestServlet class which simply
public void callbackGetAsynchMessage(String esbSeqId, EsbPrincipal[] principals,

 String msg) throws Exception,HelloWorldException
{

HelloWorldTestServlet.responseReceived(esbSeqId, msg);

}

When a callback arrives, the esbSeqId needs to be correlated against some logic
that keeps track of the outgoing requests – perhaps there will be a HashSet that
stores the esbSeqIds associated with each outgoing request, and when a callback
arrives, simply check the esbSeqId that arrived with what is inside the HashSet. In
the above code it is doing exactly that, the callback is calling a static method in the
HelloWorldTestServlet, passing along the esbSeqId and the actual message. This
static method in the servlet simply checks to see if the esbSeqId exists in a
HashSet, and if it does, sets the received message as what is to be displayed on the
web page.

It would be even better to persist the esbSeqId (and any other request related
information) so that request/call-back correlation is not lost when the container
goes down. It will also prevent the scenario where a different instance of the same
service where to receive a particular callback, but that instance did not originate
the request, hence it rejects the callback since it has no record of the esbSeqId in
memory. Since when using a persistent database, there would only be one central
repository of esbSeqIds and not in memory inside each service, all the instances
could receive the callback without a problem – they would simply check the

database for the esbSeqId. Of course, this all relies in making sure all service
instances point to the same database.

5.3 Coding The Client For Asynchronous Calls

The two methods, getAsynchMessage(…) and callbackGetAsynchMessage(…)
need to be added to the HelloWorldClient. To do this, the updated HelloWorld
service needs to be deployed, and the stubs re-generated from it’s WSDL (see
section 4.0) to reflect the new methods in the service. Once this has been
performed, the two methods can be added to the HelloWorldClient that will use
the new methods in the stubs:

HelloWorldClient.java (excerpt)

 public String getAsynchMessage(String name) throws Exception
 {
 String seqNo = null;
 try
 {
 seqNo = super.getNextSeqNo();
 com.spherion.ap.esb.client.EsbPrincipal[] principals = super.getPrincipals
();
 hwsbs.getAsynchMessage(seqNo, principals, name);
 }
 catch (HelloWorldException hwe)
 {
 throw new Exception(hwe);
 }
 catch (RemoteException re)
 {
 String errMsg = re.getMessage();
 if (errMsg.indexOf("HelloWorldException") != -1)
 {
 throw new Exception(re);
 }
 re.printStackTrace();
 deregister();
 connect();
 getAsynchMessage(name);
 }
 return seqNo;
 }

 public void callbackGetAsynchMessage(String esbSeqId, EsbPrincipal[]
principals,
 String msg) throws Exception
 {

 try

 {
 hwsbs.callbackGetAsynchMessage(esbSeqId, principals,msg);
 }
 catch (HelloWorldException hwe)
 {
 throw new Exception(hwe);
 }
 catch (RemoteException re)
 {
 String errMsg = re.getMessage();
 if (errMsg.indexOf("HelloWorldException") != -1)
 {
 throw new Exception(re);
 }
 re.printStackTrace();
 deregister();
 connect();
 callbackGetAsynchMessage(esbSeqId, principals, msg);
 }
 }

Relatively straightforward, the getAsynchMessage(…) call is almost identical to
the way the synchronous getMessage(…) call is made, with the exception that the
method returns the esbSeqId, and the actual call on the stub returns no argument
(since it is void).

The client code for the callbackGetAsynchMessage(…) is significant in this
particular case because (as noted previously) while this particular method has been
implemented with fail-over, unless the esbSeqId is stored in a central database
somewhere, then if one instance fails and the client fails-over to another instance,
then of course any esbSeqId references kept in memory inside the client will be
lost. Always persist the esbSeqId (and other such request related data) to a
database so that multiple instances of the service can effectively receive callbacks.

5.4 Running The Example

The “EsbClientTestServicesimple servlet referred to in Section 4.4 has been
written to invoke the asynchronous method in the “HelloWorldClient” class
through the web interface. Look for a class named “EsbClientTestServlet” located
in the com.spherion.ap.esb.testservice package. The servlet uses the
“HelloWorldClient” to authenticate a user, and then invokes the
getAsynchMessage(…) method. When the callback is made (remember, to the
same service) the callback method then sets the message to be displayed on the
web interface.

Please navigate to the following URL to access the web interface, making sure to
change <host>, <port> and <root> as appropriate:

http://<host>:<port>/<root>/HelloWorldTestServlet

Typically, the URL would look like this:

http://localhost:8080/TestService/ HelloWorldTestServlet

At the form presented, log in using any user account – typically the Administrator
account referred to in section 3.2, but other user accounts can be created by using
the Supervisor GUI (see section 6.0):

Once in, type in the reader’s first name into the field and press the “Get
Asynchronous Message” button. This will trigger the HelloWorldClient to call the
HelloWorldService and return. After 20 seconds, the HelloWorldService in turn
will use the HelloWorldClient to call the callback method, which comes back to
the HelloWorldService. This callback method in the HelloWorldService (as
described in section 5.2) will set the display message in the EsbClientTestServlet
(since all these classes are in the same application, the callback method can
“cheat” and just call the HelloWorldService using a static method).

The “Refresh Page” button can be used to see the displayed message, it will be
prefixed with “Asynch: ” for clarity.

6.0 The Supervisor GUI

As mentioned in previous sections, the Supervisor GUI can be used to configure
and manage FreeSB. It allows the creation of new users, roles and services, as well
as editing various properties.

Please navigate to the following URL, noting that the host is where the FreeSB
SupervisorService has bee deployed to, and the port is what the container has been
configured to use:

http://<host>:<port>/SupervisorService/

When FreeSB was installed, the “Administrator” account that was specified in the
build.properties file used to install with should be familiar. Please log into the
SupervisorWeb using the username and password specified for this Administrator
account. The default username is usually “admin”.

Note that any configuration changes will require a restart of all instances of the
particular service affected, and if it is a system property that is changed, then all
services and their instances must be restarted.

Upon logging in, there should be four clickable options visible:

 View Registered Services
 Modify Roles
 Modify Users
 Modify Configuration

6.1 View Registered Services

This page allows the viewing of services currently registered with FreeSB. The
name of the service, it’s IP address and the time it registered with FreeSB is
displayed. It does not matter whether service instances that have been shut-down
are still displayed as registered – if a client tries to use the dead service, it will be
automatically de-registered as part of FreeSB’s fail-over mechanisms.

6.2 Modify Roles

This page allows configuration of the roles various users are assigned to. This
includes creating and deleting such roles, as well as assigning various users to
each role. It is also possible to view the various permissions associated with a role,
i.e. what actions they are allowed to perform within FreeSB. To understand more
about permissions, refer to the document titled “FreeSB Permissions”.

6.2.1 Creating A New Role

Firstly, to create a new role, the full LDAP “Distuingished Name” (DN) of the role
must be entered, i.e it must be fully qualified such as:

cn=User Modifier,ou=Technology,o=Spherion

The reason the full Distuingished Name is required and not just the name of the
role (“User Modifier”) is that FreeSB does not know the LDAP heirachy of the
reader’s organization, i.e. there may be a completely different structure than the
name, organizational unit and organization as used in the above sample DN.

Once the role’s DN is entered into the role name field, then in the next field there
is a requirement to assign a new “rank” number to the role. The concept of the
rank is explained in the FreeSB Permissions document.

6.2.2 Displaying a User’s Roles

It is possible to view all the roles that a particular user belongs to. The information
required is the username (not the DN) of that user, and a page will list all the roles
that user belongs to. In order to view roles for all users, simply clear the field and
submit.

6.2.3 Displaying All Users For a Role

In the list of roles displayed, next to each entry there is a “View Users” link.
Clicking on it will display the users that are assigned to that particular role.

6.2.4 Adding A User To A Role

From the page displayed in section 6.2.3, simply enter the username (not the DN)
into the field and submit. Note that the user must have already been created; refer
to section 6.3 for further information.

6.2.5 Deleting A User From A Role

To delete a user from a role, on the page referred to in section 6.2.3, hit the delete
link next to the appropriate user entry.

6.2.6 Viewing Permissions For A Role

To view the access permissions for a Role, on the main “View Roles” page, click
on the “View Permissions” link next to the role. A page will be displayed that
shows all the permissions that role has, with the mask on the Moan object
separated by a colon. For example:

a:/SupervisorService/modifyUsers

The mask here is “a” and the Moan object is “modifyUsers” which sits under its
parent Moan object “SupervisorService”. Refer to the FreeSB Permissions
document on what masks and Moans are.

6.2.7 Adding a Permission To a Role

On the page referred to in section 6.2.6, the mask can be entered into the relevant
field at the bottom of the page. This mask can be singular or multiple – i.e. “t” will
assign the permission “t” to that Moan object, whereas “ty” will assign the
permissions “t” and “y” to that Moan object.

The Moan object name must also be entered into the relevant field, noting that all
Moan objects begin with a forward slash “/” and a Moan Object, with optionally
any number of child Moan objects, i.e. “/SupervisorService” is fine, along with
“/SupervisorService/modifyUsers”, as well as
“/SupervisorService/modifyUsers/modifyUsernameAttribute” etc.

6.2.8 Deleting A Permission

On the page referred to in section 6.2.6, click on the delete link next to the
permission entry.

6.2.8 Deleting A Role

On the main “Mdoify Roles” page, simply click on the “Delete” link next to the
appropriate role. This will completely delete that role from FreeSB.

6.3 Modify Users

This page allows the management of FreeSB users, including creating, deleting
and searching.

6.3.1 Create a New User

In the form at the bottom of the “Modify Users” page, please enter and submit the
details of the user to be created, including the Username, the full LDAP
Distuingished Name (DN), the last name and finally the password.

For example:

Username: johnsmith
Distuingished Name: cn=John Smith,ou=Technology,o=Spherion
Last Name: Smith
Password: firefox

The reason the full Distuingished Name is required and not just the name of the
user (“John Smith”) is that FreeSB does not know the LDAP heirachy of the
reader’s organization, i.e. there may have a completely different structure than the
name, organizational unit and organization as used in the above sample DN.

6.3.2 Deleting a User

To delete a user, click on the “Delete” link next to the appropriate user entry. This
will also automatically remove the user from all the roles they belonged to.

6.3.3 Searching For a User

If there is a significant amount of users in the system the list of users could
become very large and trying to find a single user or group of users would be quite
difficult. LDAP search queries can be used to narrow the list of users, by using the
search form in the middle of the page. For example, to find someone with the
common name “John Smith” enter the following search string:

cn=John Smith

or to search for anyone beginning with John:

cn=John*

6.4 Modify Config

This page can be used to modify the various configuration properties used
throughout FreeSB. It can also be used to add a new service to FreeSB, which
involves creating some basic configuration properties for that service.

6.4.1 Adding a New Service

In the section down below, where it says “To add a service…”, please enter the
name of the service to create (preferably with no spaces), followed by the LDAP
distuingished name and then the username and password. An example is the
“HelloWorld” service we added in section 3.2:

Name of Service: “HelloWorld”

Distinguished Name: “cn=Hello World,ou=Technology,o=Spherion”
Username: “helloworldusername”
Password: “helloworldpassword”

Next, click on the “System” link in the list. This contains the global properties for
FreeSB. Two entries need to be added which define the path on the web server to
get to the service, as well as the port that the server is running on. Down the
bottom, where it says “To create a new config property…” please enter the
properties as required and hit “Create config”. An example is the “HelloWorld”
configuration in section 3.2:

Key: helloworldpath
Value: TestService/services/HelloWorld

Key: helloworldport
Value: 8080

6.4.2 Adding a New Configuration Property

On the main “Modify Config” page click on the “View Config” link next to the
name of the service a new property is required for. There is also the “View
Config” button next to the “System” entry that defines global, system-level
properties.

At the bottom of the page, where it says “To create a new config property…” enter
the key and value of the property. Avoid spaces in the key.

6.4.3 Updating / Deleting Configuration Properties

In the page referenced in section 6.4.2, the various properties can be modified by
changing the displayed values on the form as appropriate, and hitting the “Update”
button. Please be careful when modifying “System” properties as well as
properties for the standard FreeSB services (AuthService, SupervisorService,
EsbLogger).

To delete a property, click on the “Delete” checkbox next to the particular entries
to be deleted, and click on “Update”. Please note that it is not possible to delete
certain properties – usually the ones that are associated with the base install of
FreeSB, i.e. required for operation. These will have the “Delete” checkbox greyed
out.

7.0 Extra FreeSB Features

This section will describe extra functionality that FreeSB offers but have not yet
been covered by the preceding sections.

7.1 Accessing Properties From The EsbClient

The EsbClient or a custom extension of it is used to access the various
configuration properties in FreeSB, (creating such properties is referred to in
section 6.4.2).

A client can only access the properties for the service it was instantiated for. It can
however also access “System” properties. When the EsbClient (or an extension of
it for talking to custom services) is instantiated, passing in the name of the service
it is acting on behalf of to the constructor, the EsbClient automatically retrieves
the configuration for that service from the SupervisorService. The EsbClient also
retrieves the “System” configuration at the same time. To get a particular property
value, the following method would be used on the EsbClient, passing in the key of
the property to be retrieved:

public String getProperty(String key)

For example, the following code instantiates the EsbClient, passing in the name of
the service it is acting on behalf of (which is “HelloWorld”) to the constructor and
finally retrieves the “helloworldpath” property:

EsbClient ec = new EsbClient("HelloWorld");
String path = ec.getProperty(“helloworldpath”);

7.2 Logging In FreeSB

Events can be logged in FreeSB using the following method on the EsbClient:

public void log(String logLevel,String sourceOrDestination, String message)

The “logLevel” argument is the threshold of the log message; the following values
can be used (which are retrievable by static fields in the EsbClient, or an extension
of it such as the HelloWorldClient):

HelloWorldClient.LOG_LEVEL_INFO = "INFO"
HelloWorldClient.LOG_LEVEL_DEBUG = "DEBUG"
HelloWorldClient.LOG_LEVEL_ERROR = "ERROR"
HelloWorldClient.LOG_LEVEL_WARN = "WARN"
HelloWorldClient.LOG_LEVEL_FATAL = "FATAL"

The “sourceOrDestination” argument indicates is used to indicate either where an
event originated or where an event is going to, i.e. at the client end, it might be
used to indicate which service the call is going to (say, “AuthService”), or at the
service end, which service the call came from (say, “HelloWorldService”).

The “message” argument is obvious - it’s the text of the log message.

Note that FreeSB itself internally logs certain events.

Appendix A: Commands In The EsbClient

This section describes the base level functionality provided by the EsbClient, and
performs all FreeSB related tasks. If an extended clientis used that talks to custom
services, these methods can be called using the super keyword argument.

EsbClient.java:
Method Description
boolean authnUser(String username, String
password)

This method authenticates the user,
storing the principal in that instance
of the EsbClient, returning a true or
false if authentication succeeded.
There can only be one user
authenticated per EsbClient
instance, so for every user using an
application, there will need to be an
EsbClient tracking that user within
the session. The EsbClient has been
designed so that this will not cause a
performance problem – all the
system level checks etc are cached.

boolean checkAllowed(String permission,
String namespace)

Checks to see if the current user’s
principal has that particular
permission on that namespace (or
‘moan’) object. Refer to the FreeSB
Permissions document for more
information on handling
permissions.

boolean checkAllowed(EsbPrincipal
principal, String permission, String
namespace)

Checks to see if the principal passed
in principal has that particular
permission on that namespace (or
‘moan’) object. Useful when dealing
with multiple principals at the
service end, i.e. a method would
receive both the service principal
and user principal, this
checkAllowed method can be used
to ensure at least one of those
principals has the permission to
invoke that method.

boolean checkPrincipals(EsbPrincipals[]
principals)

Used to check if multiple principals
are valid with a single call, this
makes it easier for checking
principals that have arrived with a
request to a service.

boolean deregister(String serviceName,
String serviceURL)

Deregisters a particular service
instance from FreeSB. The name of
the service and the url it resides at
must be provided.

String getNextSeqNo() Returns a unique sequence number
that can be used to track messages
across FreeSB. Especially useful for
asynchronous communication and
also audit trails.

EsbPrincipal[] getPrincipals() Returns the service principal and
user principal, if the user has been
authenticated, otherwise returns just
the service principal.

String getProperty(String key) Returns the property value for that
particular key. Only the properties
for the service that the EsbClient
was instantiated with are available.

String getServiceURL(String
serviceName,String pathKey,String
portKey)

Returns a URL for the service
requested in the arguments – the
name of the service, the path it sits
on the server (usually retrieved via
properties) and the port of the
container hosting the service (again,
retrieved using properties). The
EsbClient will contact the
SupervisorService and ask for a list
of those services, and then the
EsbClient will form a load-balanced
URL to return.

String getUsername() Returns the username of the
currently authenticated user. If no
user has been authenticated, returns
null.

void invalidateUser() Invalidates the current user’s
principal associated with the
EsbClient. Useful with someone
pressing a logout button etc.

boolean isValid() Checks to see if the currently
authenticated user’s principal is
valid.

void log(String logLevel,String
sourceOrDestination, String message)

Logs a message to the EsbLogger
service, which stores it in a
database. Required is the threshold
level (INFO, DEBUG etc) and the
name of the service being called or
name of the service the call came
from, as well as the message itself.

Todo – make sure when creating a service that it is added to the service role
Todo – make a separate method called “registerService” so that it will explicitly
Todo – add bit on registering with FreeSB on startup to the writing a service
section.
Todo – Add a dynamic client generator.
Todo – what happens with fail over and asynchronous callbacks if the original
host is down?
Todo – make creating a service add the part and port properties automatically
Todo – explain that you don’t need to use the custom client at the service end, can
just call registerService() method
Todo – appendix with all accessible methods in client including modifying users
etc
Todo – move logging from client to service, better performance
Todo – add section to checking permissions
Todo – maybe change it so that the supervisor service will form the url and return
it? Maybe bad because of load balancing issues.
Todo – viewing log messages via supervisor gui
Todo – improve performance, cleaned up
Todo - including moving to different soap transport
Todo – write and publish roadmap
Todo – snmp service
Todo - .NET client
Todo – Jboss container

tell the FreeSB to register it as a service.
Gotta include the Axis WSDL descriptor file.
Include bit on watching startup of the container.
Luckily, there’s an automatic tool to do all this.
- Problems with Axis (sending all exceptions as remote exceptions etc)
Securing FreeSB (HTTPS etc)
Secure the Auth Service’s role and user management stuff
- Make sure to configure the build so that the servlet’s deployment URL is the
same as each service’s path and port in the config file i.e. tokenise the whole thing
- Make sure to write a method into the EsbClient that will send it’s URL to the
service in order to perform the callback.

Load balancing – show them how to swap between services after a call

