
FreeSB Installation Guide
1. Introduction
Purpose
This document provides step-by-step instructions on the installation and
configuration of FreeSB Enterprise Service Bus.
Quick Install

Background
FreeSB is a service-oriented application integration engine, enabling loosely
coupled systems to plug-in to the bus and communicate with each other. The
application uses SOAP as the transport mechanism, making use of the Apache
Axis SOAP implementation.

FreeSB is comprised of the following components:

 AuthService – This is the authentication & authorisation service
component which handles all security related matters within FreeSB

 EsbClient – This is the client module that applications use to “plug” into
FreeSB

 EsbCommons - Contains all the libraries required by the FreeSB as well
as code templates and build scripts

 EsbDocs – Contains the documentation for FreeSB

 EsbLogger – This handles all logging related activity within FreeSB and
it’s client applications

 SupervisorService – This is the management service for the FreeSB, it
acts as both a web front-end in order configure the FreeSB, as well as a co-
ordinator for FreeSB services to perform registering (or “plugging” in) and
load-balancing/fail-over.

 TestService – Features a sample web application that showcases basic
functionality such as logging in and sending log messages.

Dependencies
a. Java
FreeSB requires the Java 2 SDK, Standard Edition version 1.4 or higher to run.
You can download it from http://java.sun.com and we recommend that you follow
the Java 2 SDK installation instructions carefully, making sure to define the
JAVA_HOME environment variable to point to the Java installation directory.
b. Ant
To build and run FreeSB, you will require Apache Ant, version 1.6 or higher,
available from http://ant.apache.org as a free download. Please follow the
installation instructions carefully, making sure to define the ANT_HOME
environment variable to point to the Ant installation directory.
c. Database
FreeSB requires the use of a relational database in order to store the status of the
system, various configuration data, log messages etc. The persistence engine used

by FreeSB is Hibernate, and as such FreeSB can only use the databases compatible
with Hibernate (which are many). These are listed below:

 DB2 7.1, 7.2, 8.1

 MySQL 3.23, 4.0

 PostgreSQL 7.1.2, 7.2, 7.3, 7.4

 Oracle 8i, 9i

 Sybase 12.5 (JConnect 5.5)

 Interbase 6.0.1 (Open Source) with Firebird InterClient 2.01

 HypersonicSQL 1.61, 1.7.0

 Microsoft SQL Server 2000

 Mckoi SQL 0.93

 Progress 9

 Pointbase Embedded 4.3

 SAP DB 7.3

Instructions on configuring FreeSB to use your preferred database are provided in
later sections. Our preferred database is PostgreSQL.
d. Application Server
All the major internal services (such as the authentication service, logging service
etc) provided by FreeSB are servlets that are packaged into web archive (WAR)
files and deployed. Hence, they require a servlet container in order to operate.
FreeSB was developed using the Mortbay Jetty server (available at
http://jetty.mortbay.org), which is a 100% Java implementation of the servlet
specification. Most FreeSB releases are bundled with Jetty for convenience, but
you may also provide your own copy of Jetty as long as you take care to define the
JETTY_HOME variable indicating the installation directory of you own Jetty.
Note that while other servlet containers should also work correctly, Jetty is for the
moment the only server supported. The default port of Jetty is 8080.
e. LDAP server
FreeSB requires the use of an LDAP server for its authentication and authorisation
functionality. You may provide your own LDAP server, but note that FreeSB
requires “Manager” access i.e. the ability to add/delete/modify LDAP entries. This
may cause a security concern if you’ll be using your corporate LDAP server, in
which case a security scheme should be established where FreeSB can access only
a particular root branch within the LDAP tree, and users duplicate to that branch.

If you do not currently have an LDAP server, or do not wish to use your corporate
server, then you may download OpenLDAP from http://www.openldap.org and
configure it as instructed.

Downloading FreeSB
3.1 Getting releases
FreeSB uses SourceForge.net to host the project, where you may download the
latest binary release. Go to the following URL:

http://sourceforge.net/projects/esb/
3.2 Getting source code
While releases of FreeSB are regular, to access the very latest version, you must
download the source code via CVS and build FreeSB yourself.

Follow the instructions on http://sourceforge.net/cvs/?group_id=95289 to set up
CVS if you have not done so already.

Each CVS module, listed below, must be checked out into the same directory.

 AuthService

 EsbClient

 EsbCommons

 EsbDocs

 EsbLogger

 SupervisorService

 TestService
Building FreeSB Releases

Building FreeSB from the source code is a two-step process. First, you have to
build a release - that is, take all the individual projects and create a “version” of
the FreeSB. Then you must check the configuration, compile and deploy the
services.
4.1 Building A Release
Building a release of FreeSB requires the use of Apache Ant, and for Jetty to
already be installed and configured for your machine, with the “JETTY_HOME”
environment variable set.

Once you’ve checked out all the CVS modules required (see Chapter 3), navigate
to the “EsbCommons” directory and from there, you may create a release using the
following ant targets:
ant release
or
ant release_jetty
The first command will create a FreeSB release (a directory and ZIP file) that will
not be packaged with Jetty; instead it will assume the JETTY_HOME variable is
the location to deploy services.

The second command will create a FreeSB release (a directory and ZIP file) that
will include Jetty, and hence all deployments will use this embedded Jetty.

Note that you may pass an environment variable, “freesb.version” to specify if you
want the release directory and corresponding ZIP file to be versioned, i.e. the
following command will create a “FreeSB-1.0RC2” directory and corresponding
“FreeSB-1.0RC2.zip” ZIP file:
ant –Dfreesb.version=1.0RC2 release

Deploying FreeSB
Once you have downloaded a release from the web, or a release has been built (see
Chapter 4), it’s time to configure it and deploy FreeSB’s services.
5.1 Checking Configuration
Please navigate to the directory where the FreeSB release is located. If you have
downloaded a release from the Internet, simply extract the ZIP file to a directory
of your choice. Open the following file within that directory:
build.properties
This file contains all the properties required to configure and deploy FreeSB, make
the changes that are required. Please see Appendix A for a complete reference.

Due to the nature of some of the support libraries FreeSB uses, most configuration
changes require the services to be re-deployed once the changes have been
performed.
5.1 Initialising Database
Once you have edited the section to do with database settings in the
build.properties configuration file (making sure to create the corresponding user in
your own database), in order to create the tables and initialise them with certain
default values, please run the following ant target:
ant create_db
Remember to perform this just once, as running it again will completely clear out
your existing database tables.
5.2 Creating LDAP schema
Once you have edited the section to do with LDAP settings in the build.properties
configuration file, run the following ant target to initialise the LDAP schema:
ant create_ldap_schema
Again, do this only once, it is designed to enter the default users and roles required
by FreeSB.
5.3 Deploying Services
The next process is to deploy the various FreeSB services to the container. Please
note that as FreeSB supports distributed services, it is possible to deploy each
service on different machines (with different IP addresses). It is in fact possible to
deploy the same service multiple times across different machines (only one per IP
address), to activate automatic load balancing – as long as all machines use the
same database and LDAP server, and as long as all machines are synchronized to
the same time/data (preferably through the Network Time Protocol, NTP).

Run the following command to deploy all services at once:
ant build_all
or

You can deploy individual services (to different machines) using the following
commands:
ant SupervisorService
ant AuthService
ant EsbLogger
ant TestService

Please note that the “SupervisorService”, “AuthService” and “EsbLogger” must be
deployed on at least one machine, in order for the FreeSB to operate. The
“TestService” can be deployed now, but it is recommended to read the FreeSB
Developer’s Guide for a walkthrough on that particular service, including it’s
deployment.

Also note that if you have modified the source code in a release, you will need to
re-create the EsbClient to reflect the changes:
ant EsbClient
5.4 Starting Jetty
Run the following command to start Jetty from all machines you have deployed
FreeSB services to:
ant start_jetty
This will take a minute or two, as all the services need to “plug” themselves into
the Enterprise Service Bus.
5.5 Verifying Install
Run the following command to verify that the installation succeeded (it will
attempt to access a few of the FreeSB services):
ant validate_install
The message output should indicate “OK” if everything worked successfully. If
not, refer to the troubleshooting section.

Appendix A: Fields in properties file
A. build.properties:
Field Description
supervisor.service.username This is the username used in HTTP

BASIC authentication to access the
supervisor service. This value is
used by the container to define it’s
security realm.

supervisor.service.password This is the password used in HTTP
BASIC authentication to access the
supervisor service. This value is
used by the container to define it’s
security realm.

supervisor.service.url This is the URL that will be used by
all EsbClients to access the
management facilities of the
SupervisorService. It is
reccommended to use DNS round-
robin techniques in order have one
domain name point to multiple
machines with a SupervisorService
installed on each. This prevents a
single instance of the
SupervisorService being saturated
with management requests by
clients.

hibernate.connection.username The username of the database
required by FreeSB. “Hibernate” is
the database persistence component
used by FreeSB.

hibernate.connection.password The password of the database
required by FreeSB. “Hibernate” is
the database persistence component
used by FreeSB.

hibernate.dialect This is a setting which tells FreeSB
what compatible database to use.
For a list of compatible databases
and their dialects, please refer to
Appendix B.

hibernate.connection.driver_class The class name of the relevant
JDBC driver for your database.

hibernate.connection.url The URL of the database you are
connecting to. Depending on the
database driver, this URL will be
significantly different from one
database to the next.

ldap.url The URL of your LDAP server.

ldap.manager.name The LDAP distinguished name of
the “Manager” account i.e. the user
who has permission to
create/update/delete entries in the
LDAP database.

ldap.manager.password The password for the LDAP
“Manager” account.

ldap.base The root branch within the LDAP
database where all the FreeSB
entries (such as users and roles) will
go. Perhaps the “Manager” account
could be set to access only this
branch, to maintain your
organization’s security guidelines.
Note that all other LDAP
distinguished names in the
build.properties file must refer to the
same organization.

ldap.admin.username The username of the FreeSB
administrator account. This is what
is used to log into the
SupervisorService web front-end.

ldap.admin.password The password of the FreeSB
administrator account. This is what
is used to log into the
SupervisorService web front-end.

ldap.admin.distuingishedname The LDAP distinguished name of
the FreeSB administrator account.
FreeSB will create this account in
the LDAP database on installation.

ldap.admin.lastname The last name of the LDAP
administrator account.

supervisor.service.ldap.distuingishedname The LDAP distinguished name of
the SupervisorService. This entry is
used to authenticate the
SupervisorService as being a valid
FreeSB service. Created by FreeSB
on installation. Not recommended to
change the name “Supervisor
Service” in it, only the
organisational unit and orgranisation
to reflect your organization’s LDAP
directory structure

supervisor.service.ldap.lastname The last name of the
SupervisorService LDAP account.
Should be left alone as “Service”
just for conventions sake.

supervisor.service.ldap.username The username that the
SupervisorService will use to
register with FreeSB on startup.

supervisor.service.ldap.password The password that the
SupervisorService will use to
register with FreeSB on startup.

The remaining block of LDAP configuration entries for the Auth Service, Logger
Service and Test Service are all similar to the above Supervisor, except of course
referencing their own details.
esb.service.ldap.role This is the LDAP role that all

FreeSB services must belong to.
supervisorgui.access.ldap.role This is the LDAP role that all users

of the SupervisorService web front-
end must belong to in order to gain
access. It is assigned to the FreeSB
Administrator by default.

supervisorgui.role.modifier.ldap.role This is the LDAP role that allows
modification of LDAP roles within
FreeSB via the SupervisorService
web front-end. It is assigned to the
FreeSB Administrator by default,
and hence, the FreeSB
Administrator can assign it to
others.

supervisorgui.user.modifier.ldap.role This is the LDAP role that allows
modification of LDAP users within
FreeSB via the SupervisorService
web front-end. It is assigned to the
FreeSB Administrator by default.

supervisorgui.config.modifier.ldap.role This is the LDAP role that allows
modification of the various
configuration parameters (such as
this very list) within FreeSB via the
SupervisorService web front-end. It
is assigned to the FreeSB
Administrator by default.

auth.service.default.principal.expirytime This is the default expiry time of a
“Principal” - a token generated
when a user or service is
authenticated, and is used to
maintain and track that
authentication within a session. It is
possible to over-ride this value
manually, so modification is not
usually required.

auth.service.default.principal.extensiontime This is the default extension time of
a “Principal”. Every time a user or
service uses FreeSB functionality
that requires security (such as
interacting with other services) the
Principal is refreshed, and if a
higher time-to-live figure is
required, this value is used to extend
that TTL.

auth.service.http.soap.access.path This is the path on the web server
that allows SOAP communication
with the AuthService.

auth.service.http.soap.access.port This is the port on the web server
that provides access to the
AuthService web application.

supervisor.service.http.soap.access.path This is the path on the web server
that allows SOAP communication
with the SupervisorService.

supervisor.service.http.soap.access.port This is the port on the web server
that provides access to the
SupervisorService web application.

logger.service.http.soap.access.path This is the path on the web server
that allows SOAP communication
with the EsbLogger.

logger.service.http.soap.access.port This is the port on the web server
that provides access to the
EsbLogger web application.

Appendix B: Compatible Database Dialects

RDBMS Dialect

DB2 net.sf.hibernate.dialect.DB2Dialect

MySQL net.sf.hibernate.dialect.MySQLDialect

SAP DB net.sf.hibernate.dialect.SAPDBDialect

Oracle (any
version)

net.sf.hibernate.dialect.OracleDialect

Oracle 9 net.sf.hibernate.dialect.Oracle9Dialect

Sybase net.sf.hibernate.dialect.SybaseDialect

Sybase Anywhere net.sf.hibernate.dialect.SybaseAnywhereDialect

Progress net.sf.hibernate.dialect.ProgressDialect

RDBMS Dialect

Mckoi SQL net.sf.hibernate.dialect.MckoiDialect

Interbase net.sf.hibernate.dialect.InterbaseDialect

Pointbase net.sf.hibernate.dialect.PointbaseDialect

PostgreSQL net.sf.hibernate.dialect.PostgreSQLDialect

HypersonicSQL net.sf.hibernate.dialect.HSQLDialect

Microsoft SQL
Server net.sf.hibernate.dialect.SQLServerDialect

Ingres net.sf.hibernate.dialect.IngresDialect

Informix net.sf.hibernate.dialect.InformixDialect

FrontBase net.sf.hibernate.dialect.FrontbaseDialect

Troubleshooting

Q: Building a service(s) does not deploy to where I want it.

A: It is possible it is deploying to an incorrect JETTY_HOME directory. Make sure
that if you specify a JETTY_HOME variable in your environment, it is pointing to the
correct directory. If you have both a JETTY_HOME environment variable and you
use the release of FreeSB that packages Jetty, and you wish to deploy to your
JETTY_HOME directory, make sure you delete the “Jetty” directory in your FreeSB
release directory once it is unpacked.

